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Simplified Proofs of Error Estimates for the Least 
Squares Method for Dirichlet's Problem 

By Garth A. Baker* 

Abstract. Recently, Bramble and Schatz have proposed a projection method for 
approximating the solution of Dirichlet's problem. Error estimates are derived by the 
authors using arguments based on certain interpolation theorems for linear operators on 
Hilbert spaces. 

It is shown here that simpler and shorter methods can be used to obtain these error 
estimates. 

1. Introduction. The purpose of this note is to give a simplified proof of the 
results obtained by Bramble and Schatz in [1], where they proposed a method of 
least squares for obtaining approximations to solutions of Dirichlet's problem. 

To obtain error estimates in [1], Bramble and Schatz employed certain interpola- 
tion theorems for linear operators on Hilbert space, and, in particular, used these 
theorems in an iterative argument to get the results. 

Subsequently, an observation of Thomee [7] showed that the iterative argument 
mentioned above could be avoided with the use of appropriate trace theorems and 
a reformulation of the approximability assumptions on the subspaces used. This 
observation resulted in a slight simplification of the methods used in [1]. 

Here, we present a new technique for obtaining the results of [1] which is much 
simpler and shorter than the prior ones. An entirely different approach is used which 
in essence involves a basic a priori estimate, and an argument based on duality. This 
new technique also yields a slight extention of the results of [1]. In particular, the 
estimate (5.3) of Theorem 5.1 is new. 

2. Notation and Preliminaries. 
Function Spaces. Let Q be a bounded domain in RN, with boundary aQ, which 

is assumed, for convenience, to be of class Ca. The closure of Q will be denoted by 
Q. All functions appearing in this paper will be real valued. 

For s > 0, HS(Q) and HS(a Q) will denote the Sobolev spaces of order s of func- 
tions on Q and aOQ, respectively, with associated norms I. 1, and I l1, respectively. 
For definitions and characterizations of these spaces, the conventions of [5] are 
adopted. 

On the spaces of square integrable functions on Q and a Q, respectively, we shall 
use the notation 
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(u, v) = f uv dx and (u, v) = f uv do- 

for the inner products. 
For s < 0, the conventions of [6] are adopted; H'(Q) is defined to be the completion 

of C'(n), the set of infinitely differentiable functions on Q, with respect to the norm 

IlVIk= sup (v, \t)/Ikt'II8. 

Similarly, by the conventions of [6], for s < 0, H8(O Q) is defined to be the com- 
pletion of C'(aQ), the set of infinitely differentiable functions on aQ, with respect 
to the norm 

Ivi- = sup (V, V/)/kI I-s 
)E ECMO( Q) 

The Boundary-Value Problem. As in [1], we are concerned with the method of 
least squares for obtaining approximations to the solution, u, of the elliptic boundary- 
value problem 

(2.1) Lu = f in Q, 

u = g on aQ. 

Here, L is the second-order elliptic operator defined by 
N Nr 

Lu = L(x, D)u = -a, Di(aij(x)Dju) + Z bi(x)Diu + c(x)u, x E Q. 
i,ji=1 ill 

f C H0(Q) and g E H372(OQ). This problem is denoted by P(L, f, g). 
The following condition is imposed on the problem: 
Condition (A). (i) The coefficients ai i, bi and c of L are in C (), i, j = 1, 2, , N. 
(ii) L is uniformly elliptic in Q. That is, there exists a constant a > 0, such that, 

for 1, RN,* N) Rand all x E Q, 
N N 

a Z 2 < ? i2 ajj(x)tjtj. 
i=1 i,jill 

(iii) The only solution of GP(L, 0, 0) is u = 0. 
A Priori Estimates. In this section and throughout the rest of the paper, C will 

denote a generic constant, not necessarily the same in any two places. 
Concerning the existence, uniqueness, and regularity of the solution of (2.1), we 

have the following theorem. 
THEOREM 2.1 (CF. [5]). Under Condition (A), the mapping T: C (Q) -* C (Q) X 

C'(aQ) defined by Tu = (Lu, u) and completed by continuity is a homeomorphism of 
HS(Q) onto Hs-2(Q) X Hs-l/2(aQ) for all s > 2; and the norms 

1I1 -II and {I IL II-2 + I 12-1/21 

are equivalent. 
Henceforth, we assume that the boundary-value problem (2.1) has a unique solu- 

tion u E Hr(Q), for some r > 4. 
We shall need also the following a priori estimates. 
THEOREM 2.2 (CF. [6]). Under Condition (A), for each s > 2, if v E HS(Q), then 
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Lv E Hs2(Q), and v E Hs`l'2(,2) and, for each p ? s, there exists a constant C, 
independent of v, such that 

(2.2) IIvIi?, _ C,{f|ILv| IP-2 + IV p-1/2}a 

LEMMA 2.1 (CF. [4]). There exists a constant C > 0 such that, for all v E H1(Q), 

IvI0 _< cle-1 1lvl lo + e I lv 11 } 

for all e > 0. 
LEMMA 2.2 (CF. [5]). There exists a constant C such that, if s1 < S2 are any two real 

numbers, then, for s = Os, + (1 - O)s2, 0 0 < 1, and v C H82(QQ), 

Ivf, < C IvI'. IVI,2O) 

3. Finite-Dimensional Subspaces. Certain classes of finite-dimensional func- 
tion spaces, from which approximations to the solution of (2.1) are obtained, will 
now be introduced. 

Let r and k be given positive integers with k ? r. We say that the family of spaces 
{ Sh} O<h5l is of class Sk,r(Q) if 

(a) for each h, Sh is finite dimensional, 
(b) Sh C Hk(Q) for each h, 
(c) there is a constant C such that if v C Hr(Q), 

IC 

inf E h'I v - Xlli < ChrfIVIfr, 0 < h < 1. 
Xesh j=O 

It can be shown that if {Sh}o<h<l is of class Skr(Q) with 2 _ k, then it is also of 
class 82,8(Q) for all 2 ? s ? r. This is done in [2]. 

The approximability assumptions on the subspaces { Sh} O<h^l differ from those 
of [1]; however, for the types of subspaces used in practice, for example piecewise 
polynomials, it may be shown that both are satisfied (cf. [3]). 

Henceforth, we assume that we have a family of subspaces {Sj o<h1_1, of class 
Skr(Q) for some r > 4, and k > 2, both fixed. 

4. Least Squares Approximations. On H2(Q) X H2( Q), define the bilinear form 
[, ]by 

[up, s] = (Lv, LOb) + h3(G, st) 

where h is as in Section 3. 
Clearly, [, ] defines an inner product, and we introduce the notation 

Ik1o1 L = [1 
2 

We also have Schwarz's inequality 

(4.1) [o, VI] < |oIL |1VI IL. 

LEMMA 4.1. Let u satisfy (2.1), then, for each h C (0, 1], there exists a unique 
function Uh e Sh satisfying 

(4.2) [Uh, X] = (f, Lx) + h3 (g, x) for all X C Sh, 
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(4.3) [u - Uh, X] = 0 for all x E Sh 

and 

(4.4) inf Hau - xIIL = faU - UhI|L. 
XESh 

Proof. The existence and uniqueness of Uh C Sh satisfying (4.2) follows from the 
fact that Sh is finite dimensional, and that the form [ ], * is positive definite. 

Now, observe that if u satisfies (2.1), then [u, x] = (f, Lx) + h-3 (g, x) and hence, 
from (4.2), we have in fact 

[u, x] = [Uh, XI for all x C Sh, 

which gives (4.3). 
Clearly, 

(4.5) inf I |u - xI IL ?I IU Uh IL. 
XESh 

For x C Sh, x - Uh C Sh, and so 

aI U - Uh I I L = [U - U, U - Uk = [U U, U - X + X - Uk] 

= [U - Uh, U %] X |/U Uhf IL IU - XI IL; 

that is 

H U - UhHIL < If/U - XIL, X C Sh. 

Hence 

(4.6) |/U - U/I|L ? inf / -u XIIL. 
x ESh 

Combining (4.5) and (4.6), we get (4.4). This concludes the proof. 
The function Uh in the above lemma is called the least squares approximation to 

u, and (4.4) is thus an error estimate for the approximation. In fact, (4.4) shows that 
Uh is the best approximation to the function u, from the subspace Sh, in the norm I * I L- 

The following lemma now displays the approximability of the family of subspaces 
{Sh} O<I1?, with respect to the norm 1H I - IL. 

LEMMA 4.2. There exists a constant C > 0 such that, for 2 ? s < r and v C HS(Q), 

inf IIV - XIIL - ChS 2 IIVIIS, 0 < h < 1. 
XESh 

Proof. Let x C Sh. Then 

I IV- XIL = {IIL(v -X) I| + hI3 |V -xi1 

< C{ I IV X- 12 + -3/2 IV- _ 

from Theorem 2.1, for some constant C. From Lemma 2.1, with e = h"2, 

h32 fV _ Xfo _ Ch-3/2{h-/2 fIv - xlo + h"'2 fIv- X11f}. 

Hence, for some constant C, 
2 

fIV - XIIL _ Ch 2 E h7 I/v - Xl i. 
j'O 
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And so, from the property (c) of the subspaces of Section 3, 

inf IIv - XIIL < Ch -2 fIVfIf, 
xesh 

which concludes the proof. 

5. Error Estimates. In this section, estimates for L(u - uh) and for the error 
(u - Uh) on the boundary aQ are derived; these estimates are then combined to give 
estimates for the error in the spaces HP(Q), 4 - r ? p < 2. The following theorem 
is a slight extension of the results of Bramble and Schatz. The proofs given here are 
new, and constitute the main part of the paper. 

THEOREM 5.1. There exists a constant C such that, if u satisfies (2.1), and Uh E Sh 

satisfies (4.2), then, for 2 ? s ? r, if u C H1(Q) and e = u - uh, 

(5.1) IlelIL < Ch s2 Illull, 

(5.2) llLell1-2 ? Ch8- I lull, 4 - r _ p < 2, 

(5.3) lel,-112 ? Chi lull8, 1 - r< P < 2 

(5.4) llellp < Ch- l8ull8, 4 - r < p < 1 

Proof. The estimate (5.1) follows immediately from (4.4) of Lemma 4.1 and 
Lemma 4.2. 

We now derive (5.2) and (5.3). To this end, let A/ E C'(n) and v E C'(aQ). By 
Theorem 2.1, there exists a (p E C(n), satisfying 

Lep= s/ in Q, 

(p = v onaQ, 

hence 

[e, *p] = (Le, Jt) + h 3(e, v). 

Now, by (4.3) and (4.1), 

[e, tp] = [e,tp - X] < IlelIL l1?- XIIL 

for all x E Sh. Thus, by Lemma 4.2, 

[e, p] < IlelIL inf l1? - XIIL < Ch2 lkpoll8 IlelIL 
xesh 

for 2 < s < r. Hence, from (2.2), 

(5.5) (Le, ik) + h 3(e,v) < Chs-2 IlelIL {IlI1lks-2 + IVls-1/2} 

for 2 < s ? r. 
Now, (5.5) holds for s/ arbitrary in C@(Q), and v arbitrary in C'(OQ). Hence, in 

particular, for v = 0, we have 

(Le, Jt) < Ch8 2 llellL lk'lls-2, t E C (J), 2 < s < r. 

Therefore 

IlLell-(.-2 = sup (Le, Vt)/II'IIs-2 < Ch s2 Itel L, 2 < s < r, 
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or 

(5.6) ILelIpj2 _ Ch 2-P |ei IL, 4 - r ? p < 2. 

Hence, from (5.1) and (5.6), we get 

IlLellp-2 ? Ch 8P lull,, 4 - r _ p < 2, 

which is (5.2). 
Similarly, for ,6 = 0 in (5.5), 

(e,v) < Ch+l' jvj-,12 let IL, v C C (OQ), 2 _ s _ r, 

and so 

(5.7) lel-0-112) = sup (ev)/lvI-l,12 < Ch'+' IlellL, 2 < s _ r. 
V E C , ( dQ) 

In particular, for s = r in (5.7), we get 

(5 .8) lei-(,-112) _ Chr~ |lel |L. 
We also have from the definition of the norm I II L that 

(5.9) lelo < h3/2 IleliL. 

Using (5.8) and (5.9), we can estimate let p/2 for 1 - r <- p < . Precisely, we 
may write 

P- 2, = 0[-(r- DI, 0_< 0 _ 1. 

And from Lemma 2.2, with s2 = 0, s1 = -(r -2 

(5.10) le lp12 < C leiO lel(rl/2), where 0 = -(p - )/(r - 

Hence, using (5.8) and (5.9) in (5.10), 

lelp-1/2 < Ch IlelIL, 1 -r < p < ,2 

And again, from (5.1), 

lelp-1/2 ? Ch' lull,, 1 -r < p < 

which is (5.3). 
We may now obtain (5.4) from (5.2) and (5.3), by using the a priori inequality 

(2.2), 

I let I| < C{ I |Le lp-2 + lelP-1/2} 

Combining (5.2) and (5.3), we obtain, for 4 - r < p- 2 

llellp < Ch' P Ilull_, 2 < s < r, 

which concludes the proof. 
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